चरम

english extreme

सारांश

  • एक प्रकाश, आत्म-चालित आंदोलन ऊपर या आगे
  • कुछ सही करने का कार्य
  • कुछ की सबसे दूर या उच्चतम डिग्री
    • वह इसे चरम सीमा तक ले गया
  • कुछ की सबसे बड़ी संभव डिग्री
    • उन्होंने जो किया वह स्वीकार्य व्यवहार की सीमा से परे था
    • उसकी क्षमता की सीमा तक
  • एक आदर्श उदाहरण; एक अवधारणा का एक आदर्श अवतार
  • रेखा या विमान कुछ की सीमा या सीमा को इंगित करता है
  • बिंदु कुछ के बीच से सबसे दूर स्थित है
  • किसी विशिष्ट क्षेत्र की सीमा
  • जहाँ तक कुछ जा सकता है
  • किसी चीज की सबसे बड़ी राशि जो संभव या अनुमत हो
    • आप शर्त लगा सकते हैं कि राशि पर सीमाएं हैं
    • यह दृष्टि में कोई सीमा नहीं के साथ तेजी से बढ़ रहा है
  • गणितीय मान जिसके लिए एक फ़ंक्शन स्वतंत्र चर के रूप में जाता है अनंत तक पहुंचता है
  • एक क्षेत्र की सीमा निर्धारित करने वाली एक रेखा
  • एक दोष या दोष के बिना होने की स्थिति
  • अंतिम या नवीनतम सीमित बिंदु

अवलोकन

गणित में, एक सीमा वह मान है जो एक फ़ंक्शन (या अनुक्रम) इनपुट के रूप में "दृष्टिकोण" या (सूचकांक) "दृष्टिकोण" कुछ मूल्य के रूप में। कैलकुलस (और सामान्य रूप से गणितीय विश्लेषण) के लिए सीमाएं आवश्यक हैं और निरंतरता, डेरिवेटिव और अभिन्नताओं को परिभाषित करने के लिए उपयोग की जाती हैं।
एक अनुक्रम की सीमा की अवधारणा को एक टोपोलॉजिकल नेट की सीमा की अवधारणा के लिए सामान्यीकृत किया गया है, और श्रेणी सिद्धांत में सीमा और प्रत्यक्ष सीमा से निकटता से संबंधित है।
सूत्र में, फ़ंक्शन की सीमा आमतौर पर लिखी जाती है

अनुक्रमको ध्यान में रखते हुए, इस क्रम का nth शब्द 0 तक पहुंच जाता है क्योंकि n असीम रूप से बड़ा हो जाता है। आम तौर पर एक अनंत अनुक्रम {ए | एन = 1,2, ......} एन-वें अवधि के एन, जब एक निश्चित संख्या में एक करने के लिए संभव के रूप में आ रहा है जब unlimitedly n में वृद्धि, इस क्रम है कि अभिसरण फिर, को इस अनुक्रम का सीमा मूल्य कहा जाता है। एक संकेत के साथ,द्वारा प्रस्तुत। उदाहरण के लिए, एक अनुक्रमहैअभिसरण करता है और सीमा मान क्रमशः 0 और 1 हैं। एक गैर-अभिसरण अनुक्रम को एक विचलन अनुक्रम कहा जाता है। उनमें से

(1) 1,2,2 2, 2 3, ..., 2 n के रूप में, जब n n-th शब्द एक n बड़ा होता है, तब असीम रूप से वृद्धि होती है, आशा है कि यह क्रम सकारात्मक अनन्तता को विचलित करता है ,2वैसे भी।

(२) इसी प्रकारका मामला परिभाषित है।

(३) अन्य मामलों में, अनुक्रम को कभी-कभी कंपन कहा जाता है। एक वास्तविक अनुक्रम के लिए आवश्यक और पर्याप्त स्थिति अभिसरण है मूल स्तंभ करना है।
तोरु सुगी

स्रोत World Encyclopedia